Nathan Eck

Structural

Dr. Memari

Falls Church Tower

Falls Church, VA

About Falls Church Tower Thesis Objectives Depth Study Alternative Lateral Framing System

Breadth #1

Breadth #2

Cost and Schedule Analysis
Conclusion

Acknowledgements

Presentation Overview

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

About Falls Church Tower

Project Team

Owner: Sunburst Hospitality Equity Residential Structural Engineer: SK&A Group Architect: WDG Architecture General Contractor: Donohoe Construction Company

Building Information

Location: Falls Church, VA Size: 536,000 SF Occupancy Type: Residential Total Cost: \$92,000,000

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

About Falls Church Tower

Architecture

11 Stories + Penthouse 3 ½ Levels of Undeground Parking Brick façade with concrete and glazing elements private pool across from the plaza

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Thesis Objectives

Project Goals

- Improve Lateral Framing System
- Decrease the weight of the building
- Reduce the cost and schedule of the framing system
- Minimize the impact on the architecture

Structural Depth

- Originally an ordinary concrete moment frame with post tensioned slab
- Irregular column layou

Proposal

- In corporation of a shear wall system
- Reduction in column sizes throughout building

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Thesis Objectives

Project Goals

- Improve Lateral Framing System
- Decrease the weight of the building
- Reduce the cost and schedule of the framing system
- Minimize the impact on the architecture

Architectural Breadth

- Redesign column layout
- Modification of floor plan and façade elements

Cost and Scheduling Breadth

Compare validity of existing and alternative structural systems

Thesis Objectives

Depth Study

Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Existing Gravity System

- 7" thick post-tensioned slab
- 2-3 strand tendons
- Tendons spaced 5' on center
- Irregular array of columns
- Range of sizes
 Typical 25'x25' bays

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Existing Lateral System

- Columns uniquely oriented to reduce lateral displacement in both directions
- Range in column sizes meant to resist lateral loads as much as gravity loads

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth #2

Cost and Schedule Analysis
Conclusion

Acknowledgements

Depth Study

Existing Frame Analysis

- Wind Shear = 957 K
- Seismic Shear = 1933 K
- Seismic Conctrols

12.31 K	>	Pent. Roof	
12.31 K 2.1 K 184.74 K 249.32K 229.56 K 293.58 K 244.84 K 221.82 K 173.09K 128.99 K		Pent. Roof Main Roof 11 10 9 8 7 6 5	 14.41 K 199.15 K 448.47 K 678.04 K 971.62 K 1216.46 K 1438.27 K 1611.37 K 1740.36 K
90.25 K 56.38 K 32.60 K 13.41		4 3 2 1 B1	 1830.60 K 1836.98 K 1919.59 K 1933 K (Base Shear)

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

ETABS Model

- Originally modeled in AutoCAD
- Transferred to ETABS
- Diaphragms were assumed to be rigid
- All seismic forces were applied at center of mass
- All column were fixed at both ends

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Column Design

• Sized columns based on the new layout

- Tributary areas determined in AutoCAD
- 3 typical column types
 - Interior Column
 - "Large Area" Interior Column
 - Exterior

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth <u>#2</u>

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Shear Wall Design Criteria

- Locate walls around elevator shafts and stairwells
- Multiple layouts

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Shear Wall Layouts

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Shear Wall Layouts

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth <u>#2</u>

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Layout 5

• Capable of reducing drift to values less than the existing frame

About Falls Church Tower	Dept	th S	tudy						
Thesis Objectives	Seismic Story	Drift of Exi	ting Structu	re	Seismic	Story Dr	ift of Revi	sed Structur	re
Depth Study	Floor Y (ir	n) X (in)	Total Y	Total X	Floor	Y (in)	X (in)	Total Y	Тс
Depth Study	Pent. Roof 0.0	065 0.01	4 0.065	0.014	Pent. Roof	0.052	0.088	0.052	
Alternative Lateral Framing System	Mech. Roof 0.0	093 0.01	4 0.158	0.028	Mech. Roof	0.057	0.052	0.108	
Breadth #1	Main Roof 0.0	098 0.01	7 0.256	0.045	Main Roof	0.059	0.094	0.167	
	11 0.0	099 0.01	9 0.356	0.064	11	0.060	0.099	0.228	
Architectural Impact	10 0.0	098 0.01	9 0.454	0.083	10	0.060	0.099	0.288	
	9 0.0	096 0.01	9 0.550	0.102	9	0.059	0.097	0.346	
Breadth #2	8 0.0	092 0.01	8 0.642	0.120	8	0.057	0.095	0.403	
Cost and Schedule Analysis	7 0.0	086 0.01	7 0.729	0.137	7	0.053	0.089	0.457	
Conclusion	6 0.0	078 0.01	5 0.806	0.153	6	0.048	0.081	0.505	
Conclusion	5 0.0	066 0.01	3 0.872	0.166	5	0.041	0.070	0.546	
Acknowledgements	4 0.0	052 0.01	1 0.924	0.177	4	0.033	0.055	0.579	
	3 0.0	036 0.00	8 0.960	0.184	3	0.022	0.037	0.601	
	2 0.0	013 0.00	3 0.973	0.187	2	0.009	0.015	0.610	

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Depth Study

Shear Wall Design

- Layout 5 was modeled in ETABS
- New seismic load was determined
- Analysis was run to determine the stresses in the shear wall
- Strength checks were performed and the wall strength verified

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth <u>#2</u>

Cost and Schedule Analysis

Conclusion

Acknowledgements

Architectural Breadth

Goals

- Revise the existing column layout to a definable grid
- Reduce the impact in the floor plan and facade

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth <u>#2</u>

Cost and Schedule Analysis

Conclusion

Acknowledgements

Architectural Breadth

Column Layout

- Adheres to two different grids Radial
 - Rectangular
- Reduces the number of columns per floor

Thesis Objectives

Depth Study

Breadth #1

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Architectural Breadth

- Column Layout Only minor changes in floor plan
 - Slight partition shifts
 - Balcony shift

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Architectural Breadth

Column Layout

- Effect on Facade
 - Glazed façade on south face of the building
 - Originally had 5 columns across face
 - Reduced to 4 columns

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Architectural Breadth

Column Layout

- Effect on Facade
 - Glazed façade on south face of the building
 - Originally had 5 columns across face
 - Reduced to 4 columns

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Cost and Scheduling

Goals

- Develop estimates for both the existing structure and the revised structure
- Develop scheduling estimates for both the existing structure and the revised structure
- Compare the cost and schedule estimates and verify the feasibility of the revised structure

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Cost and Scheduling

Cost and Scheduling Process

- Determine necessary criteria
 Materials, formwork, steel, etc.
- Find unit prices/hours using RS Means Costworks

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

DI Cautil $\pi \mathbf{1}$

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Cost and Scheduling

Element	Existing Structure	Redesigned Structure		
Columns	\$1,071,333.38	\$535,663.77		
Slabs	\$2,334,217.66	\$2,334,574.61		
Shear Walls	-	\$386,345.68		
Total Time	\$3,405,551.04	\$3,256,584.05		
Difference	-\$148,966.99			

	Time Required (Days)				
Element	Existing Structure	Redesigned Structure			
Column Formwork	515	243			
Column Concrete	15	11			
Slab Formwork	617	617			
Total Time	1,147	871			
Difference	-276				

Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Conclusion

Structural

- Reduce Size
- Incorporate shear walls and reduce lateral drift

Architecture

• Reduce the number of columns and assign to grid with minimal impact on the floor plan

Cost and Scheduling

• Use cost estimates to verify the feasibility of the shear wall system

Acknowledgements

About Falls Church Tower Thesis Objectives

Depth Study

Alternative Lateral Framing System
Breadth #1

Architectural Impact

Breadth #2

Cost and Schedule Analysis

Conclusion

Acknowledgements

Questions

WDG Architecture: Ray Rivera Rick Hammann SK&A Engineering: Gino Biagioni Scott Stuart Sunburst Hospitality: Randy Hartig Penn State University: Dr. Memari Prof. Hanagan Prof. Boothby And my family, friend and peers About Falls Church Tower Thesis Objectives Depth Study Alternative Lateral Framing System Breadth #1 Architectural Impact Breadth #2 Cost and Schedule Analysis Conclusion Acknowledgements Questions